CAPITULO 7

TRANSMISIÓN DE IMPULSOS DESDE LAS TERMINACIONES NERVIOSAS A LAS FIBRAS DEL MÚSCULO ESQUELÉTICO: LA UNIÓN NEUROMUSCULAR

Todas las fibras nerviosas, después de entrar en el vientre muscular, normalmente se ramifican y estimulan entre tres y varios cientos de fibras musculares esqueléticas. Cada terminación nerviosa forma una unión, denominada unión neuromuscular, con la fibra muscular cerca de su punto medio. El potencial de acción que se inicia en la fibra muscular por la señal nerviosa viaja en ambas direcciones hacia los extremos de la fibra muscular. Con la excepción de aproximadamente el 2% de las fibras musculares, solo hay una unión de este tipo en cada fibra muscular.

Ver las imágenes de origen

SECRECIÓN DE ACETILCOLINA POR LAS TERMINACIONES NERVIOSAS

Cuando un impulso nervioso llega a la unión neuromuscular, se liberan aproximadamente 125 vesículas de acetilcolina desde las terminaciones hacia el espacio sináptico. Algunos de los detalles de este mecanismo que muestra una imagen ampliada de un espacio sináptico con la membrana neural por encima y la membrana muscular y sus hendiduras subneurales por debajo. Liberación de acetilcolina desde las vesículas sinápticas en la membrana neural de la unión neuromuscular. Obsérvese la proximidad de los puntos de liberación de la membrana neural con los receptores de acetilcolina de la membrana muscular, en las aberturas de las hendiduras subneurales.  

En la superficie interna de la membrana neural hay barras densas lineales. A ambos lados de cada una de estas barras densas hay partículas proteicas que penetran en la membrana neural; son canales de calcio activados por el voltaje. Cuando un potencial de acción se propaga por la terminación, estos canales se abren y permiten que iones calcio difundan desde el espacio sináptico hacia el interior de la terminación nerviosa. Se piensa que a su vez los iones calcio activan la proteína cinasa dependiente de Ca++-calmodulina que, a su vez, fosforila las proteínas sinapsina que unen las vesículas de acetilcolina con el citoesqueleto del terminal presináptico. Este proceso libera las vesículas de acetilcolina del citoesqueleto y permite que se muevan a la zona activa de la membrana neural presináptica adyacente a las barras densas. Las vesículas se ajustan en los puntos de liberación, se fusionan con la membrana neural y vacían su acetilcolina hacia el espacio sináptico mediante el proceso de exocitosis.

Aunque algunos de los detalles que se han mencionado previamente son hipotéticos, se sabe que el estímulo eficaz que produce la liberación de acetilcolina desde las vesículas es la entrada de iones calcio y que después se vacía la acetilcolina desde las vesículas a través de la membrana neural adyacente a las barras densas.

Ver las imágenes de origen

La acetilcolina abre los canales iónicos en las membranas postsinápticas

El complejo receptor de acetilcolina fetal está formado por cinco subunidades proteicas, dos proteínas a y una proteína b, una d y una g. En el adulto, una proteína épsilon sustituye a la proteína gamma en el complejo receptor. Estas moléculas proteicas atraviesan la membrana, y están dispuestas en círculo para formar un canal tubular. El canal permanece cerrado hasta que dos moléculas de acetilcolina se unen respectivamente a las dos subunidades proteicas a. Esta fijación produce un cambio conformacional que abre el canal.

El canal activado por acetilcolina tiene un diámetro de aproximadamente 0,65 nm, que es lo suficientemente grande como para permitir que los iones positivos importantes – sodio (Na+), potasio (K+) y calcio (Ca++) – se muevan con facilidad a través de la abertura.

Ver las imágenes de origen
  • Potencial de la placa terminal y excitación de la fibra muscular esquelética

La rápida entrada de iones sodio en la fibra muscular cuando se abren los canales activados por acetilcolina hace que el potencial eléctrico en el interior de la fibra en la zona local de la placa terminal aumente en dirección positiva hasta 50 a 75 mV, generando un potencial local denominado potencial de la placa terminal. Normalmente es suficiente un aumento súbito del potencial de la membrana nerviosa de más de 20 a 30 mV para iniciar la apertura de cada vez más canales de sodio, iniciando de esta manera un potencial de acción en la membrana de la fibra muscular.

Fármacos que potencian o bloquean la transmisión en la unión neuromuscular

  • Fármacos que estimulan la fibra muscular por su acción similar a la acetilcolina

Varios compuestos, por ejemplo metacolina, carbacol y nicotina, tienen casi el mismo efecto sobre la fibra muscular que la acetilcolina. La diferencia entre estos fármacos y la acetilcolina consiste en que los fármacos no son destruidos por la colinesterasa, o son destruidos tan lentamente que su acción con frecuencia persiste durante muchos minutos a varias horas. Estos fármacos actúan produciendo zonas localizadas de despolarización de la membrana de la fibra muscular en la placa motora terminal donde están localizados los receptores de acetilcolina. Después, cada vez que la fibra muscular se recupera de una contracción previa, estas zonas polarizadas, por la fuga de iones, inician un nuevo potencial de acción, produciendo de esta manera un estado de espasmo muscular.

  • Fármacos que estimulan la unión neuromuscular mediante la inactivación de la acetilcolinesterasa

Tres fármacos particularmente bien conocidos, neostigmina, fisostigmina y fluorofosfato de diisopropilo, inactivan la acetilcolinesterasa de las sinapsis de modo que ya no pueda hidrolizar la acetilcolina. Por tanto, con cada impulso nervioso sucesivo se acumula una cantidad adicional de acetilcolina, que estimula repetitivamente la fibra muscular. Esta actividad produce espasmo muscular incluso cuando llegan al músculo solo unos pocos impulsos nerviosos. Lamentablemente, también puede producir la muerte por espasmo laríngeo, que produce la asfixia del paciente.

Neostigmina y fisostigmina se combinan con la acetilcolinesterasa para inactivar la acetilcolinesterasa durante hasta varias horas, después de lo cual estos fármacos son desplazados de la acetilcolinesterasa, de modo que la esterasa se activa de nuevo. Por el contrario, el fluorofosfato de diisopropilo, que es un potente tóxico gaseoso “nervioso”, inactiva la acetilcolinesterasa durante semanas, lo que hace que sea un tóxico particularmente letal.

  • Fármacos que bloquean la transmisión en la unión neuromuscular

Un grupo de fármacos conocido como fármacos curariformes puede impedir el paso de los impulsos desde la terminación nerviosa hacia el músculo. Por ejemplo, la d-tubocurarina bloquea la acción de la acetilcolina sobre los receptores de acetilcolina de la fibra muscular, impidiendo de esta manera el aumento suficiente de la permeabilidad de los canales de la membrana muscular para iniciar un potencial de acción.

  • La miastenia grave causa debilidad muscular

La miastenia grave, que aparece en aproximadamente 1 de cada 20.000 personas, produce debilidad muscular debido a que las uniones neuromusculares no pueden transmitir suficientes señales desde las fibras nerviosas a las fibras musculares. En cuanto a su patogenia, en la sangre de la mayor parte de los pacientes que tienen miastenia grave se han detectado anticuerpos dirigidos frente a los receptores de acetilcolina. Por tanto, se piensa que la miastenia grave es una enfermedad autoinmunitaria en la que los pacientes han desarrollado anticuerpos que bloquean o destruyen sus propios receptores de acetilcolina en la unión neuromuscular postsináptica.

Resultado de imagen de MIASTENIA GRAVE

POTENCIAL DE ACCIÓN MUSCULAR

Casi todo lo que se ha analizado en el capítulo 5 sobre el inicio y la conducción de los potenciales de acción en las fibras nerviosas se aplica por igual a las fibras musculares esqueléticas, excepto por diferencias cuantitativas. Algunos de los aspectos cuantitativos de los potenciales musculares son los siguientes:

  1. Potencial de membrana en reposo: aproximadamente –80 a –90 mV en las fibras esqueléticas, el mismo que en las fibras nerviosas mielinizadas grandes.
  2. Duración del potencial de acción: 1 a 5 ms en el músculo esquelético, aproximadamente cinco veces mayor que en los nervios mielinizados grandes.
  3. Velocidad de conducción: 3 a 5 m/s, aproximadamente 1/13 de la velocidad de conducción de las fibras nerviosas mielinizadas grandes que excitan el músculo esquelético.

ACOPLAMIENTO EXCITACIÓN-CONTRACCIÓN

SISTEMA DE TÚBULOS TRANSVERSOS-RETÍCULO SARCOPLÁSMICO

Las miofibrillas rodeadas por el sistema de túbulos T-retículo sarcoplásmico. Los túbulos T son pequeños y siguen un trayecto transversal a las miofibrillas. Comienzan en la membrana celular y penetran en todo el espesor desde un lado de la fibra muscular hasta el lado opuesto. Estos túbulos se ramifiquen entre ellos y formen planos completos de túbulos T que se entrelazan entre todas las miofibrillas individuales. Además, donde los túbulos T se originan en la membrana celular, están abiertos hacia el exterior de la fibra muscular. Por tanto, se comunican con el líquido extracelular que rodea la fibra muscular y contienen líquido extracelular en su luz. En otras palabras, los túbulos T son realmente extensiones internas de la membrana celular. Por tanto, cuando un potencial de acción se propaga por la membrana de una fibra muscular, también se propaga un cambio de potencial a lo largo de los túbulos T hacia las zonas profundas del interior de la fibra muscular. De esta manera las corrientes eléctricas que rodean a estos túbulos T producen la contracción muscular.

El retículo sarcoplásmico está formado por dos partes principales:

  1. Grandes cavidades denominadas cisternas terminales, localizadas junto a los túbulos T.
  2. Túbulos longitudinales largos que rodean todas las superficies de las miofibrillas que se están contrayendo.
Ver las imágenes de origen

Dejar un comentario

Diseña un sitio como este con WordPress.com
Comenzar